- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kesseli, Aurora (2)
-
Adorno, Jose I (1)
-
Aganze, Christian (1)
-
Ali-Dib, Mohamad (1)
-
Allers, Katelyn N (1)
-
Antonini, Edoardo (1)
-
Apps, Kevin (1)
-
Bardalez_Gagliuffi, Daniella C (1)
-
Bazinet, Luc (1)
-
Bean, Jacob L (1)
-
Beaulieu, Paul (1)
-
Benneke, Björn (1)
-
Bickle, Thomas P (1)
-
Bilsing, Martin (1)
-
Brodheim, Max (1)
-
Brooks, Hunter (1)
-
Burgasser, Adam J (1)
-
Calamari, Emily (1)
-
Carmichael, Theron_W (1)
-
Carmona, Andres (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Giacalone, Steven; Dai, Fei; Zanazzi, J_J; Howard, Andrew_W; Dressing, Courtney_D; Winn, Joshua_N; Rubenzahl, Ryan_A; Carmichael, Theron_W; Vowell, Noah; Kesseli, Aurora; et al (, The Astronomical Journal)Abstract We introduce the OATMEAL survey, an effort to measure the obliquities of stars with transiting brown dwarf companions. We observed a transit of the close-in (Porb= 1.74 days) brown dwarf GPX-1 b using the Keck Planet Finder spectrograph to measure the sky-projected angle between its orbital axis and the spin axis of its early F-type host star (λ). We measuredλ= 6.°9 ± 10.°0, suggesting an orbit that is prograde and well aligned with the stellar equator. Hot Jupiters around early F stars are frequently found to have highly misaligned orbits, with polar and retrograde orbits being commonplace. It has been theorized that these misalignments stem from dynamical interactions, such as von Zeipel–Kozai–Lidov cycles, and are retained over long timescales due to weak tidal dissipation in stars with radiative envelopes. By comparing GPX-1 to similar systems under the frameworks of different tidal evolution theories, we argued that the rate of tidal dissipation is too slow to have re-aligned the system. This suggests that GPX-1 may have arrived at its close-in orbit via coplanar high-eccentricity migration or migration through an aligned protoplanetary disk. Our result for GPX-1 is one of few measurements of the obliquity of a star with a transiting brown dwarf. By enlarging the number of such measurements and comparing them with hot-Jupiter systems, we will more clearly discern the differences between the mechanisms that dictate the formation and evolution of both classes of objects.more » « less
-
Kirkpatrick, J Davy; Marocco, Federico; Gelino, Christopher R; Raghu, Yadukrishna; Faherty, Jacqueline K; Bardalez_Gagliuffi, Daniella C; Schurr, Steven D; Apps, Kevin; Schneider, Adam C; Meisner, Aaron M; et al (, The Astrophysical Journal Supplement Series)Abstract A complete accounting of nearby objects—from the highest-mass white dwarf progenitors down to low-mass brown dwarfs—is now possible, thanks to an almost complete set of trigonometric parallax determinations from Gaia, ground-based surveys, and Spitzer follow-up. We create a census of objects within a Sun-centered sphere of 20 pc radius and check published literature to decompose each binary or higher-order system into its separate components. The result is a volume-limited census of ∼3600individualstar formation products useful in measuring the initial mass function across the stellar (<8M⊙) and substellar (≳5MJup) regimes. Comparing our resulting initial mass function to previous measurements shows good agreement above 0.8M⊙and a divergence at lower masses. Our 20 pc space densities are best fit with a quadripartite power law, , with long-established values ofα= 2.3 at high masses (0.55 <M< 8.00M⊙), andα= 1.3 at intermediate masses (0.22 <M< 0.55M⊙), but at lower masses, we findα= 0.25 for 0.05 <M< 0.22M⊙, andα= 0.6 for 0.01 <M< 0.05M⊙. This implies that the rate of production as a function of decreasing mass diminishes in the low-mass star/high-mass brown dwarf regime before increasing again in the low-mass brown dwarf regime. Correcting for completeness, we find a star to brown dwarf number ratio of, currently, 4:1, and an average mass per object of 0.41M⊙.more » « less
An official website of the United States government
